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ABSTRACT

This paper considers admissibility criteria for non-linear conservation

laws based on (M) viscosity and (ii) capillarity and viscosity. It is shown

by means of specific examples that while (ii) yields results consistent with

experiment for materials exhibiting phase transitions, e.g. a van der Waals

fluid, (i) does not.
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SIGNIFICANCE AND EXPLANATION

In the study of phase transitions in fluids a typical model is provided

by the equilibrium configuration of a van der Waals fluid. Such equilibria

show a fluid may exist in two phases, liquid and vapor. In this paper we

'" consider criteria which should admit the "physically relevant" liquid-vapor

shock wave interfaces. It is shown that a criterion based on both interfacial

capillarity and viscosity yields results consistent with experiment for

isothermal motions.
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THE VISCOSITY-CAPILLARITY ADMISSIBILITY CRITERION

FOR SHOCKS AND PHASE TRANSITIONS

R. Hagan and M. Slemrod

To Jerry Ericksen on the occasion of his 60th birthday.

0. Introduction

In a recent paper Serrin [] reconsidered Korteweg's theory of

capillarity [2], (3] and applied it to find conditions for equilibrium of

liquid and vapor phases in a van der Waals fluid. In subsequent papers

*:' Slemrod [4], (5] extended Serrin's approach and proposed Korteweg's theory as

*. a natural way of choosing physically meaningful solutions for dynamic changes

of phase in a van der Waals fluid. In turn James [6] has shown that the

Korteweg theory is also a rational way of studying dynamic changes of phase in

non-elasticity as well, e.g. in materials exhibiting "martensitic" or "shape

memory" phase transitions (see Ericksen [7]). In this paper we carry this

:, program one step further: We propose the Korteweg theory to provide the

universal admissibility criterion for isothermal motions of compressible

thermo-elastic fluids. Indeed it is our belief that the Korteweg theory

combined with the introduction of the natural thermal dissipation of heat

*: conduction should provide the universal admissibility criterion for

compressible thermo-elastic fluids in general. For the purposes of this

"" paper, however, we restrict ourselves to the isothermal case. We shall show

by specific examples when the theory agrees and disagrees with predictions
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based on viscosity alone. Furthermore we will point out the power of the

Korteweg theory in choosing admissible singular surfaces for conservation laws

which are neither genuinely non-linear nor even hyperbolic, e. g. motion of a

van der Waals fluid.

The paper is divided into four sections. The first section derives the

balance laws of compressible fluid mechanics in Lagrangian form. The second

section discusses admissibility with respect to viscosity alone. The third

section considers admissibility with respect to the viscosity-capillarity

condition as derived from Korteweg's theory. In particular we show that the

usually accepted ideas on admissibility of shocks in ideal gases are

consistent with the viscosity-capillarity condition. Finally the fourth

section applies the viscosity-capillarity condition the the issue of phase

transitions in a van der Waals fluid.

We note that recently Shearer [19] has also made a study of the viscosity

and viscosity-capillarity criteria. Basically his work centers on what is

here given in Examples 5 and 6 of Section 3. Aside from this overlap our

paper is devoted to issues not considered in [19].

.

". ..........



1. Preliminary discussion of the equations of compressible fluid flow.

We follow the presentation of Courant and Friedrichs (8] of a Lagrangian

description based on the law of conservation of mass. The fluid flow is

thought of as taking place in a tube of unit cross section along the x-axis.

We attach the value X = 0 to any definite "zero" section moving with the

fluid. For any other section we let X be equal in magnitude to the mass of

the fluid in the tube of unit cross sectional area between that section and

* the zero section. Analytically the quantity X satisfies the relation

X lX,t) Plx,tx . (1.1)
Sx lOt)

Here p(x,t) denotes the density of position x and time t and

x - X(X,t) denotes the position of the particle so that a mass X of fluid

is enclosed in the tube bounded by x(X,t) and X(0,t). Differentiation of

(1.1) implies 1 - Xx(X,t)P(X(X,t),t). Let P(X(X,t),t) = P(X,t), w(X,t) -

P(Xt) (the specific volume), x(x,t) - u(X,t) = Xt(X,t) (the velocity).

We denote the stress by T, the specific internal energy by E, the

specific heat absorption by q, the heat flux by h, the specific body force

by b. Then the equations of balance of linear momentum, energy, and mass

become

p =T + pb
x

PC= Pq + Tx + h
x x

p+px =0
x

dwhere @ We now apply the chain rule and rewrite this system in the

terms of the independent variables X, t to obtain

X = t + b

t  q + TXt +h , (1.2)
ttx x

(PXx = 0

-3-
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where we have used the fact that P(x,t) - p(X,t). The third of these
t

equations is automatically satisfied since PX= 1.

The above set of balance laws must be supplemented by constitutive

relations. We assume the fluid is compressible, isotropic, and thermo-elastic

where the stress, internal energy, and heat flux satisfy

= -T (w T)

S(wT)

h - h(w,T) , (1.3)

s = s(w,T)

A
" " w,T)

where X (the pressure) and s (the specific entropy) are deriveable from

the Helmholtz free energy potential
A

- , S "- ;I (1.4)

We now make the simplifying hypothesis that the fluid is imbedded in a

"heat bath" so that the motion is isothermal (T - positive constant) and that

there are no body forces. Mathematically this means that q is assumed to be

adjusted so that (1.-0 is always satisfied identically with T - constant and

"' b- O.

If the motion is isothermal w(w,T) is a function of w alone and we

set W(w,T) p(w). Hence (1.2) is equivalent to the first order system

i ut " -plw)X •

(1.5)
Wt  = Ux X

2
where we assume p l C (0,-). AS is easily seen (1.5) is either hyperbolic or

elliptic depending on the sign of p'(w).

A C curve r :X = (t) across which u, w experience jumps is

called a singular surface or shock wave. if r is a singular surface let

-4-
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,7.1

(0(t), t) be a fixed point on the graph of r and let U = 1(t). Denote

" by u+, w+, u_, w_ the respective limits from the right and the left as

' (X,t) + (0(W), t) for (u,w). If we put [u] - u+ - u_, [w] = w+ - w_, etc.

then we known the Rankine-Huginot jump conditions must be satisfied across

B r, i.e.

UEu] - (p] = 0
1 ,(1.6)

U(w] + Cu] - 0

Of course (1.6) implies U2 satisfies the equation

2 [p]
U J 0v[w



2. Admissibility with respect to the viscosity criterion.

Let us imbed the inviscid equations (1.5) in a viscous formulation, i.e.

* we take

T - -p(w) + IPux  (2.1)

where P > 0 is the (assumed constant) viscosity.

Now let r X 0(t) be a singular surface for (1.6). We ask the

question: Are solutions of (1.5) in the neighborhood of the singular surface

r limits of solutions (1.2a), (2.1) as 0 + 0+? While this problem has a

long history dating back to Rayleigh [9] it is the more recent discussions of

Wendroff [10] and Dafermos [11] we shall follow.

Let (O(t), t) be a fixed point on the graph of r and let u+, w+, u_,

wv, U be as in Section 1. We look for a traveling wave solution of (1.2),

(2.1) given by

u(X,t) = u(c), w(Xt) = w(c), E x-ut

A A
It follows that u, w must satisfy

-Uu' = (-p + A')'
u= u

(2.2)_U4 ,V

dwhere ' - .

In order for u, w to approximate the discontinuous profile of the

solution to (1.5) we require

(a(.), ,(.), G( "(), ,(+)) (u_, w_, u+, w+) • (2.3)

A
Definition 2.1. If there exists u, W, C functions so that (2.2), (2.3) are

satisfied for all points ((t), t) we say the singular surface satisfies the

viscosity admissibility criterion.

Theorem 2.2. The viscosity admissibility criterion is satisfied if and only

if

-p(w') + P(w)

-U ( _ ) 0 (4 0) if U > 0(< 0) (2.4)
w-

-6-



for every value w between w and w+.

In other words for (w+ - w_)U > 0 ((w+ - w_)U < 0) the chord which

joins (v., p(w_) to (w+, p(w+)) lies above (below) the graph of the

function p(w) for v between w- and w+.

* Proof. Integrate (2.2) from -m to E. It then easily follows that 0(g)

satisfies the first order equation

2 AA
U ME(() - w) + p(w(F)) - p(w_) - -UO'() . (2.5)

If U 9f 0 and w < w+(w. > w+) then we must have w'(9) > 0 (w'(&) < 0)

and hence (2.4) follows.
0

In the exceptional case of a static singular surface where U - 0 we

have C - X/O and (2.2) becomes p(w( ))' = 0. So if w is a C1  function

A A
satisfying w(-) = w, w4) = w+ we see p(W(t)) = p(w_) - p(w+) for all

< < * and hence p(;) must equal p(w. p(w+) for all w between

w ,and w+. So unless p is identicaly constant on [w-, w+] a static

singular surface is never admissible according to the viscosity criterion.

* Example 1. Let p(w) have the graph shown in Figure I where p' < 0, p" > 0

for w 0 w+. In this case the chord connecting (w., p(w_)) to (w+, p(w+))

lies above the graph of p(w) and the singular surface r X = Ut with

-plw+) + plw m)

U- + (2.6)

is admissible according to the viscosity criterion.

-7-



&' p (w)

w ww

Figure 1

Example 2. Let p(w) have the graph shown in Figure 2. In Figure 2 the

chord joining (w, p(w_)) to (w+, p(w+)) again lies above the graph of

p(w) for w_ < w < w+ even though the chord is tangent to the graph at

(w+, p(w+)). Thus the singular surface r : X = Ut with U given by (2.6)

is again admissible according to the viscosity criterion. The purpose of this

example is to point out that the viscosity criterion allows for tangency

constructions.

.. -8-
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3. The viscosity-capillarity criterion

The problem with the viscosity criterion is that it allows only the

viscosity as a higher order singular correction in the thermo-elastic fluid's

constitutive relation. In line with the generally held belief that

consideration of other physically meaningful effects should help pick out the

physically relevant solutions. Slemrod [4] suggested a new condition termed

the viscosity-capillarity criterion based on Korteweg's theory of capillarity

([2], [3]). In this section we will review the viscosity-capillarity

criterion and apply it to some examples.

According to Korteweg's theory the stress T in our one-dimensional,

isotropic, isothermal formulation will be given by

2T = p(w) + B(w)w - C(w)wXX + 1(w)u . (3.1)

For simplicity we shall consider only the constant coefficient case

(w)= P a positive constant,

C(w) V2A , A a constant,

B(w) = - 2D , D a constant.

In this special case (1.2a), (3.1) become

ut = (-p(w) - P2 Aw + "u - JJ wP )xI

(3.2)
W t = UX •

d

Now again let r be a singular surface with 0(t), U, w, w+, u., u+ as

given in Section I. Again we look for traveling wave solutions

A X-Utu(X,t) = u(t), w(X,t) (W), t x
4

this time for equations (3.2). It then follows that u , w must satisfy

-u^= (-p(w) - Aw - +w' 2 u')'
(3.3)

-Uw u

6 -10-



:, A A
In order that u, w will approximate the discontinuous profile we

* require again that

A A A A

' 'These considerations motivate the following definition, where from now on

i we drop the A superscript.

Definition 3.1. If there exist u e C2, w e C3 satisfying (3.3), (3.4) for

all points (c(t), t) we will say the singular surface r satisfies the

viscosity-capillarity admissibility criterion (AD).

Since the criterion may possibly be satisfied for one (A,D) pair and not

- another the dependence of the criterion on A and D has been explicitly

noted in the above definition.

Lemma 3.2. The viscosity-capillarity criterion (A,D) is satisfied if and only

3if there exists w(g) e C a solution of the second order equation

Aw" + Uw' + Dw' 2 + f(w,U) - 0 , (3.5)

W() -w, w() = w , (3.6)

where

*2
f(CU) U (.-w_) + p() - p(w_) (3.7)

" Proof. Integrate (3.3) from -m to F.

0

Theorem 3.3. Assume (3.5) possesses precisely two equilibrium point w = w_,

w1 - 0 and w = w+, w' - 0 with w_ < w+, p'(w_) < 0, p'(w+) < 0. Then

there is a solution w(C) of (3.5) connecting these equilibrium points if the

following holds:

(i) A > 0, U > 0 and

(a) (-p'(w+))12 < U < (-p'(w_))/2

(b) the chord connecting (w_, p(w_)) and (w+, p(w+)) lies above

the graph of p(w) for w_ < w < w+ I

-11-



w

(c) for some I > w+, f,- exp(T- )f(,U)dc = 0

(ii) A > 0, U < 0 and

(a) -(-p'w+))'12 < U < -(-p' (w_) 1 2

(b) the chord connecting (w_, p(w_)) to (w,, p(w+)) lies below the

graph of p(w) for w_ < w < w+

V

(c) for some I < w_, f, exp(- 4)f(,U)dC = 0

(iii) A < 0, U < 0 and

(a) (-PI(w+,))/2 < -U < (-P,_(w))/2

and i-b, li-c holdl

(iv) A < O, U > 0 and

(a) -(-p'(w+))'/2 < -U < -(-p' W_) 1/2

and ii-b, i-c hold.

Proof. Rewrite (3.5) in first order form

W= V

(3.8)
2

AV' = -f(w,U) - U7 -V

and set

H(w,v) = exp(- w)v2 + G(w,U), where
A

G(w*U) A fw exp(j& C)f(C,U)dC

Let {(w,v); w < w < 9, H(w,v) < H(w ,0)}

{(w,v); w < w <9, exp(- w)v2 < w f exp( 2D fC,UldC

where t is now assumed to be the smallest such t so that i-c holds. From1

i-b and i-c we see S is a simply connected bounded open set in R2

containing (w+,O). Furthermore

dli 2 )v2 v2
= 2 U exp(- wlv ( -const. v for const. > 0

where (w,v) e f. Thus any orbit which enters R remains in Q. Also i-a

-12-



shown (w_,O) is a saddle and an elementary analysis of this saddle shown

that it possesses an unstable manifold which enters 2. By Lasalle's

invariance principle ((12], p. 316) an orbit entering 0 on this manifold

must approach an equilibrium point since H is a Liapunov function on Q

Such an orbit cannot approach (w..,0) since 211 0 in 0 and

H(w,v) < H(w_,0) for (w,v) in £0, hence it approaches (w+,0).

(ii) The proof here is analagous to (i) with

G (w, U) f 2x -!) f( )d

The saddle now is at (w_,O) and f (w,v), I < w < w+, H(w,v) < li(w+.0))

where I is assumed to be the largest such A so that ui-c holds.

(iii) The proof is analagous to (i) with G and 0 as given in (ii).

(iv) Again the proof is analagous to (i) with G and 11 as given in Ci).

* ~corollary 3.4. Mi The conclusion of Theorem 3.3(i) holds if i-c is replaced

by (i-c'): p" > 0 for w)l w+6

(ii) The conclusion of Theorem 3.3(11) holds if ui-c is

replaced by (ui-c'): p" < 0 for w 4 w.

Proof. Mi We note (i-c') implies p'(w) - p'(w+) > 0 for w > w+4 and hence

by i-a p'(w) + U 2  for some e > 0. Thus p(w) - p(w+) +

w
U(w-w) > C(w-w) for w >w+ and f - exp(-1)f(,U)dC as

w + 4-. Hence there is an £ so that

Corollary 3.5. If p' < 0, A > 0 and i-a holds then the conclusion of

Theorem 3.3(i) holds.

-13-



Proof. Apply Corollary 3.4.

w

Corollary 3.6. If p' < 0, p" > 0, A < 0 and lir f p(l)dC 4 - then thewwO

conclusion of Theorem 3.3(iii) holds.

Proof. Here i-b, i-d are automatically satisfied and the rest is an obvious

application of Theorem 3.3(ii).

o

Example 3. Consider an ideal gas with constitutive relation w(w,T) - RTw 1

where R is a positive constant. AS the chord joining (w_,p(w_)) to

(w+,p(w+)) lies above the graph of p(w) between w_ and w+, the singular

surface r : x - Ut with U given by (2.6) is admissible according to the

viscosity condition. Corollary 3.5 shows r is also admissible according to

the viscosity-capillarity condition (A,D) for A > 0. On the other hand

Corollary 3.6 shows that r X = Ut with

-p(w ++p ( w)
U-

w-w -w

is admissible according to the viscosity-capillarity condition (A,D) if

A < 0. Thus A < 0 admits rarefaction shocks in an ideal gas. For this

reason we view A > 0 as the only physically reasonable choice.

* Example 4. Let p(w) be as in Figure 1. In Example I we saw r : x = Ut

was admissible according to the viscosity criterion where U is given by

(2.7). Now we see by Corollary 3.4(i) that this same r is also admissible

according to the viscosity-capillarity criterion (A,D), A > 0.

Example 5. Assume p(w) has the graph as shown in Figure 2. In this case

if D - 0 the potential G(w) M Iw f( ,U)dC has the graph shown in Figure
VW4

3.

-14-
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G (w)

w
w- w+

5+

Figure 3

We note the point (w+a, G(v.+)) is a point of inflection. Typical phase

* flows exiting from w w, v -0 will generally be unbounded and only in

exceptional circumstances will we have w(4-) - w~ *of course (3.5), (3.6)

* has the rather simple mechanical analogue. Namely one visualizes a bead

rolling down the hill given by the graph of G(w). Admissibility according to

the viscosity-capillarity criterion (A > 0, D -0) would require the damping

* force of rolling motion given by Uw' sufficient to bring the bead to rest at

the inflection point (w+, G(w+)) - a highly unlikely circumstance. Hence

*except for this exceptional case the singular surface r :x ut where U

is given by (2.6) will be admissible according to the viscosity criterion and

inadmissible according to the viscosity-capillarity criterion (A > 0, D =0).

* Example 6. Let p(w) be as shown in Figure 5.

-15-
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p (w)

-4 w
W+

Figure 4

In Figure 4 the chord joining (w_, p(w_)) to (w+, p(w+)) again lies

above the graph of p(w) for w- < w < w+ even though the chord is tangent

to the graph at (w+, p(w+)). So the singular surface r : x - ut vith U

given by (2.7) is admissible according to the viscosity criterion. However if

we plot the potential G(w) fw f&r,U)dC we find G(w) has the graph shown
W+.

in Figure S.

Figure 5 -'

-16-



Here again as in Example 4 (w+, G(w+)) is an inflection point. Now

however instead of the typical flows of (3.5) exiting w = w., w' - 0 being

unbounded these flows will either be unbounded or approach the equilibrium

point w - w*v' - 0, modulo the exceptional case that the f(w)
*

approaches w - w , w' - 0. So again the singular surface r ; x - Ut with

U given by (2.6) is admissible according to the viscosity criterion and

. inadmissible (modulo an exceptional case) according to the viscosity

capillarity condition (A > 0, D - 0).

-17-



4. Dynamics of phase transitions in a van der Waals f luid.

in this section we examine the admissibility of singular surfaces for

isothermal motions of a van der Waals fluid. In a van der Waals fluid the

constitutive relation for the pressure is given by

11 T) RT a 0<b <I~vT) -b 2' ~ ~ (
V

where a, b, R are positive constants (see for example [13], [14], (15]).

Again we net p(v) - 11(w,T) for isothermal motions, T - positive constant.

For T sufficiently small p(v) has a graph as shown in Figure 6.

IL W
b OL

I Figure 6

Acual inwa olw esalntrqur ntigs pcfca h

va de I l qato fsae Insedw sue pw aife h

fli n hyohss

I) Ilw < 0 oI ba

(H2 pl (a p 0 0



(W1) p'(w W ) 0 for w (MA,) where b < QCL < <

(M4) p(w) > 0 for w e Wb,)

2
* (H5) p e C b)

(M1) p~y) < p(aI) as v + a

* (H7W) p(v) has one inflection point in (,

*(H8) p(Y) =p(O), p(6) p(ca), b < Y < a9, < 6 <

The domains (b,a) and (0,00) will be called the a (liquid) phase and

B(vapor) phase respectively.

We shall now consider the admissibility of several singular surfaces

* separating liquid and vapor phases of a van der Waals fluid.

*Example 7. When w, and w1  are as shown in Figure 7 the chord

connecting (w1 1,p(wi-)) and Lw1 ,p(v1 )) lies above the graph of p(w)

between w, and w, asso r1 utwt

-p(v )+p(w1

+

*is admissible according to the viscosity criterion. Theorem 3.3(i) shows r

is also admissible according to the viscosity-capillarity condition (A,D),

A > 0

-19-
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Example 8. When w2  and w2  are shown in Figure 7 the same chord-graph
2+

argument as in Example 7 shows r x - U2t with

-p(w2 )+p(v 2

U
2 w2 -

2. 2_

is admissible according to the viscosity criterion. However an argument

analagous the one of Example 6 shows that (modulo an exceptional circumstance)

r will not be admissible according to the viscosity-capillarity condition

(A,D), A > 0, D - 0. We expect that admissibility according to the viscosity-

capillarity criterion will not be aided if D 0 0.

Example 9. For w3_ and w3+ shown in Figure 7 the remarks made in Example

8 again apply. So r : X -U 3t with

- P(w3 )+P(W3

3 w3  -w 3 _

is admissible according to the viscosity criterion but not generally

admissible according to the viscosity-capillarity condition (A,D),A > 0.

Example 10. For w4_ and w4+ shown in Figure 7 the singular surface is

r : X - 0 with U4 - 0 since P(w4 ) - P(w4+). By the remark in Section 2

r cannot be admissible according to the viscosity criterion. On the other

hand an elementary quadrature solution of (3.5), (3.6) shows that if w4_

and w4+ satisfy

w4

" + exp(+ - C)(p(C) - p(w 4 ))dr . 0

-21-



then r is admissible according to the viscosity-capillarity condition

(A,D). of course if D - 0 the above relation reduces to the well known

Maxwell equal area rule [1], [13], [14]. If D # 0 the relation falls within

the new class of "rules" proposed by Serrin [1].

We note that for non-zero U when the chord connecting (w ,p(w.))

and (w+,p(w+)) cuts the graph of p(w) at intermediate value of w,

Theorem 2.2 precludes any such construction being admissible according to the

viscosity criterion. Such a construction may however be admissible according

to the viscosity-capillarity condition (A,D). We now examine this situation

in detail.

Example 11. Let w_ be given (b,a) and w+(U) be a solution in (B,) of

the Rankine-Huginot relation with U > 0, i.e. w+(U) satisfies

WU (U)-w

The line r : = Ut defines a singular surface. We consider the

admissibility of r according to the viscosity-capillarity condition (A,D)

when f(e,U) = p(C) - p(w_) + U2 (-w_) possesses four zeroes, namely w_,

w+(U) of course, plus two additional zeroes w(U), w*(U) where* *

a < 4(U) < B < w (U) < w +(U). Thus w (U) is the smallest solution of

f(,U) - 0 in (0,-) and w+(U) is the solution of f(C,U) = 0 in (B,-)

which satisfies p'(4) + U2  0. We also assume U2 < -p'(w_) (see Figure

-8)2
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Islope-U 
2

b y a (U) W!*( + w (U)
w

Figure 8

Again the admissibility of r according to the viscosity-capillarity

criterion (A,D) is equivalent to the existence of a solution of (3.5), (3.6)

or equivalently (3.8) with boundary conditions (w(4-),v(+-)) -(w +(U),O),

* (w(-in),v(-a) - (w 0). We now state our main theorem.

Therem4.1 M etA >I. henthre xiss >0 s tat he ingl1
Thorm4.. (i LtA .Thn hreeiss 0 s tatte igua

surface r U t for the solution

w w-w w(U)
X<U6t, X > 5> t (4.1)

u U-u =u- - U(w (U) - )
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of (1.5) is admissible according to the viscosity-capillarity condition (A,D)

if either

aI > V Y and jw(O exp(M C)f (4,O)d < 0
v A

or

W I) b <w_ < ,

and

* (II) there exists Uk> 0 so that

f exp- A )(, d

4 (ii) Let A > j.Assume (1) or (11) and (II) of (1.) above hold. Then for

all U, 0 < U < U, the singular surface r x K-Ut for the solution

v - w w v+(U)
(u u X ( Ut , X>UT (4.2)

U -u - -U(v+ (U) - )

* ~of (1.5) is admissible according to viscosity-capillarity criterion ~.)

is as given in (i).

The theorem will be proven via a sequence of lemmas.

Lemma 4.2. Let U > 0, A > 0. Then the equilibrium point (w_.,O) of (3.8)

qis a saddle. Futhermore Y +(w ,0), the orbit exiting from the saddle in
U-

the v > 0 half plane, either approaches an equilibrium point of crosses

the w- axis for increasing ~

4 ~Proof. Set T1(v,U) = 'F. From (3.5) we find nj satisfies

+ n+ V 2  
-

2

A t +U + + p(w) p(w_) (wU -w )=0 (4.3)

fl(w .0) -0 ,(4.4)

and hence
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' (w,U) U fW exp -W))l(CU)D
. ,,

(4.5)
2 f w e x p ( -A r. w f c,U I dr

From (HI) - (H6) we know
!*

f(,U) > 0 on (b,w) u (w(U),w (U)) u (w (U),m)

ow~() U (

< 0 on (w ,w(U)) u (w (U),w +(U))

If the solution exiting from the saddle doesn't cross the w axis or approach

an equilibrium point it must tend to + - as t + + M. But for such a

solution we know from (4.5) that
n; 2) (w,U) 2 w (Cw)f(wUd

So by L'Apital's rule lim T2(w,U) 4 - lim f(w,U) - . Hence w
w++ waA++

cannot approach + - and the lemma is proven.

+ e,

Definition 4.3. If Y u(w 0) intersects the w-axis define w(U) to be that

value of w so that (w(U),0) e fu(w_,0) and w(U) is the first point of

crossing the w-axis of Y+(w _0). If Y +(w,0) doesn't intersect the w axis
U J.

define (w(U),0) to be the equilibrium point approached by Y (W ,0) as
U-

Lemma 4.4. Let n(w,U) be the solution of (4.3), (4.4). Then for A >

0 < U1 < U2 , we have Tlw,U 1 ) > nllw,U2 ) on (w_,w(U2)). Furthermore we have
1  2 w e1(21 ).

Proof. A direct calculation from (4.3), (4.4) shows

aa 1 (1-4A)U
55FW n(w- U)  +2A A(U2  )1/2

Since p'(w_) + U 2 < 0 we see
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-UaF- I (w IU) 4 ~4 if 1-4A) 0

w1

4- if 1-4A 40

Hence njV(w U) <0 if A >

Now suppose Tl(w,U I in r(v,U 2 has a zero on (w-,v(U I) n (w_,(u 2)

Let V) be the smallest such zero. Then from (4.3) we have

'V 1 ( -) (Vw )(U2 2)
An(V,U )(5; (V,U1 ) TI (vu2 ],U112

Since U 2 > U1I > 0, V > w-, and fl(V,U) > 0, we have

dii
An V,U 1 ( (V,U)- (V ,U1 ) 0. Hence 1V, > (VU) which

contradicts the assumption that v is the smallest zero of

TI (v,U I -I f(w,U 2). Thus rI(w,U I > r1(wU 2  on (wv,w(U1)I n (w_,w(U 2) and

hence w(U 2) < w(U )

Definition 4.5. For the first order system (3.8) set

G (w, U) A fW~ (U) exp (- 4) f (C ,U) dC

H(w,v) _ ex2_j w 2 + G(w,U), and

-((w,v)l w*(U) < w, H(w,v) < H(w*(U),0))

U

A >0, U > 0, W*(U) < w+.(U) any orbit of (3.8) entering A U has w()O

for an w-limit set.

Proof. From (M3), MH), and WH) ye see there is a unique I > v*(U) so that

fe()xp(- 2D )f(C,U)c% - 0. Hence (~is simply connected bounded and

2U

open. Also since ---- vU ex Dw we secnt 2for

const. > 0 inside 9

Because any orbit entering 9 U remains in 9 U LaSalle's invariance

principle [12] asserts that orbit approaches the only equilibrium point in

a aely (w+(U),0).
0
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Lemma 4.7. Let A > 0, U > 0, w*(U) < w+(U). Then the solution of (3.8)

exiting from the saddle (v*(U),0) in the v > 0 half plane enters A U and

has (w+(U),O) for an cu-limit set.

Proof. Linearize about (v*(U)0O) and use Lemma 4.6.

0

Lemma 4.8. For 0 < U1 < U we have A C J1
1 2U 2 U

Proof. Note 9 = f(w,v); w*(U < (W, v 2 <- 2 w* ex M4f(, )dC)
U1  A w (U )~A 1

U2  2 22

Now for 0 < U 1 < U 2, V*(Ul) < w'(U 2) and f(ClU) = p(C) -p(w-) +

U (-w so f(CU 2  > f(I u1  Therefore if (w,v) e y e have

w* Cl w*(U2) < w and

v2 < 2 fw )exp(A C)f(C,U d) < 'C 2w )exp(- C)f(C,U )dI
A w*(U A A 1*U

Aw*(U AI

Hence (w,v) e 0
U1  0

Lemma 4.9. Assume there exists U > 0 so that there is a solution of (3.8)

connecting the saddle (w_.,0) with the saddle (w*'U),0) in the v > 0 half

plane, w (U) < W+ (U). Then there exists C > 0 so that if -C < U-U < 0,

Y + '(w 0) has (w+(U),O) for its cu-limit set.

UU

* the v > 0 half plane set y(w,U) = w'(&). Then y satisfies

A y + Uy + Dy 2 + p(w) -p(w_) 0 ,(4.7)

y(w*(U),U) =0 .(4.8)
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From (4.7) we have

Y (.,U) -1 w exp(- (C-w))y(C,U)CI

21fw exp(-4 (C-w))f(C,Ui)dC
A - A

vW (U)

Thus for v*(U) < w < w +(U) we have

n 2 (w,U) - y 2(w,Ui) - n 2 (w*(U),Ui)-

Af _ exp(- (C-w))(Urt(C,U) - Uy(C,U))dr.
A~ W(U) A

2 f2w
A V-exp( (_-'))(f(C,U) _ f(C,ii))dX

v*(U) A

where Ti(w,U) satisfies (4.3), (4.4). Thus we find

T2  2 -T 2

n(w,U) Y(w,U) n(W(U),V)

2 2D
- (UU) jw -exp(7- (C,w))TI(C,U)dK

A
A ~w*(U ) w)Ti~U

A "exp (-w (r-)
A w(U)) AA~wd

Now if Tiz(z,U) ,) 0fosoezw() z w(U), we have

y+ (w 0O) entering 9_ S and we can use Lemma 4.6 to obtain the result.
U - U

4on the other hand if n(4,U) - y(C,5) > 0 on [w*(6), w (U)) then

n 2 (v,U) - y2 (w,U 2 (w(U),U) <

- j (U-U) jw (,exp(i- (C-w))T)(C,U)dr. + const.IU 2-2

where conat. depends only on v*(U) and w+ (U). From Lemma 4.4

ncr.,U-c) > (M,U) > 0 on (w w(U)). Since we assume rl( ,u) > y( ,u) on

(W*(U), w +(U)] and we know y(C,U) > 0 on [w*(U), w +UM] we must have

v (U) < w(U). Thus (w_,w(U)) must contain [w*(U), w + (U)] and therefore

-28-



2 2 - 2-
Ti (w,U) -y (w,U) - i (-W(U),U) <

2 (U-U) fp1  ep(A -) I U-
A ~W*(U) A

2 -2
+ const.Iu -U I < const.IU-UI (4.9)

on Ew*(U), w +(U)]. So if we can show ni (w*(U),U) 4 const.IU-Uii we will

have 0 < n 2 (w,U) - y (w,U) 4 const.IU-UI on (w*(U), w +(U)j. Hence for

-6 < U-:U < 0 and C> 0 sufficiently small, Y +(w ,0) must enter c £
U U

and Lemma 4.6 will imply the result. As advertised above to conclude the

2 -

proof we need to estimate ni (w*(U),U). From (4.5) we have

nT2 (w*(U),U) - Ti2 (w*(U)U) - nT2 (w(UU

2 U fw*(U)epE (C,w))Ti(C,U)dC -- A'w*(exp( 2 (C,w))f(C,U)d1C

+ jfw* (U) ex -M. -w C )d+-3fw* (U) ep2D C-)f( )d
eA ~j Ww)Ti A ~ A w- e A~-(-)f~Ud

f1 (U) exp(- (C-w))(Uni(C,U) - Un(CU))dV.

2 (U 2 ) 2 w* (U) 2

= i f(U exp e( i(-w)) T (C-wu) d

f U(TiU) -! T(C-w))[(-iTdrU

U- (C- (U

A U2U w* exp (- (C -w))(f-w cdC

Since vj(r.,U-e) > rl(C,U) > Ti(C,U) > 0 on (w ,w*(U)) we see

T) 
2 (w*(U)U) (U-- ) Jw*(U)exp(.E (C-w))i(C,U-C)dC

A w A

2 ( t2 U2 ) fw*(U)epM (C-w))(C-w MC~

and hence nTi (w*(U),U) (const.IU-UI. The proof is now complete.

0
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Lema 4.10. Assume there exists U1 > 0 so that the orbit Y +(W,O) of

(3.8) has (w+(UI),0) as its w-limit set. Then there exists C > 0 so

that if -C t U2 -U, < 0 then Y2(w ,0) has (w+(U2 ),0) as its -limit

set.

Proof. Since U C a and Y U is continuous with respect to U, we know

+1 2 U

Y2(w ,0) will enter SU for U2 near U 1. Now use Lemma 4.6.

0

Lemma 4.11. Assume there exists U > 0 so that there is a solution of (3.8)

connecting the saddle (w_,O) with the saddle (w*(U),0) in the v > 0 half

plane, w*(U) - w+(U). Then if A > I we have for all U, 0 < U < U,+8

Yu(w,0) has (w+(U),0) as its W-limit set.

Proof. From Lemmas 4.9 and 4.10 we know the conclusion of Lemma 4.11 will be

true unless there is a decreasing sequence (U n}, Un > 0 and U* > 0 so that

U U* as n +n#

lw+(U ),0) is in the W-limit set of Y (w ,0) 1
n U n

(w+(U*),0) is not in the W-limit set of Y'U(v,0)

From Lemma 4.2 we know rn(w,U*) is bounded on (w,w(U*)) by some constant

K(U*). By Lemma 4.4 we know n(w,U n  is bounded by K(U*) on (w, w(U n)),

U* < Un UI . Since w(U ) w +(U n) we have n(w,U ) bounded by K(U*) on

(w., w+(Un)). From (4.5) we have on (w_, w+(Un))

2 20 < ri (w,U*) - I (w,Un
n

f w exp( (-w))[(U -U*)(1(,U*) - n( ,un))
A w A n n

- (U n(C,U*) - U*n(C,Un ))Id

2 (u*2U2 n) w exp(j- (C-w))(C-w_)a

By Lemma 4.4 U n(C,U*) - U*n(C,U) ) 0 on (w, w+(Un)) and since we have
n n

-30-

4 1 i



the bound KI(U*) on Ti(e,U*) and nl(,U n ) (both of which are positive on

* (w., w+(Un)) ) we see 0 <Ti2(w,U*]) - Ti2(W,Un) ( const. IUn-U*1 on

(Ww(U)). Now let w + w+(Un). Since n2 (w(Un),U }  0 we have
- 2+ (n I nU+ n 1+ iiun1,u1

0 (w( ,U*) ( const. u nU*I and so n,, 0 as Un

Also since w +(U n ) + w+(U*) as Un - U* it follows that (w+(U*),0) is in

the W-limit set of Yu, (w,0). This is the desired contradiction and the

lemma is proven.

Lemma 4.12. Assume A > 0 and let w. be such that either

f W*(0)exp(-- C)f(C,0) < 0, Y' ( w_ < 0

or

WI') b < w < Y

and

(II) assume there exists UN > 0 so that
w* (UM)I 2

f WUK )exp(- 2 t'(,U )dC - 0

Then there exists a U, 0 < U < U so that (3.8) possesses a solution in

the v > 0 half plane connecting the saddles (w_,0) and (w*(U),O).

Proof. From (4.5) we know

n2 (w, 1 = - w exp(j- (C-w))T(l,U)dC

S- w exp( (-w))f(C,U)dC
Aw- A

where n satisfies (4.3), (4.4).

For U - 0,

n 2 (wO) fwe(-D (l-w))f (4,O)d4n21(w,01 = -2 1w _

A w- A
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if WI) holds f(4,O)=p(C) -p(w) <0 and n 2 (w,0) > 0. If MI holds

2
(1I1)-(H6) imply again nl (w,0) > 0. So the orbit exiting (w_,0) for (3.8)

in the v > 0 half plane never crosses the w axis. on the other hand

2w( 2UU w*(U) 2
n Kw(MM A:! f exp(- (K-W))r(CU )dr.

Aw wA A K

2fw*(U) 2

21M f KU exp(- (4-w))T1(r.,U )df.
A w -A M

which implies 11(C,U )=0 for some z, w- < z 4 w*(U ). By continuity with
M -

respect to U we see that for some U, 0 < U < U., f(v(U),U) -0. The proof

is complete.

0

Proof of Theorem 4.1. Part M1 follows from Lemma 4.12. Part (ii) is a

consequence of Lemmas 4.10, 4.11 and 4.12.

We now give a mechanistic interpretation of Theorem 4.1. Let us assume

A > a and w_. is such that MI or WI) and (II) hold. If we look on the

Huginot curve (Figure 9) we see for w (Ua) > w (U), 0 < Ua < U, (4.2) with

U U a gives the solution of the Riemann problem (1.6) with Cauchy data

(w =- w w + w(U a{ -X ( 0, X >0 . (4.10)
- u ++Ua(+(Ua )w-) u u+

This solution is admissible according to the viscosity - capillarity

criterion (A,D), A > -1. A representation of the solution X -t plane is

given in Figure 10.
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t

w w

u u + +U (W+ (U - )

1';(U u.w+ (Ual
u u

+X

Figure 10: Solution of (1.6), (4.10)

AS we compress the fluid so that v*(U) < (U) for some Ubb

Ub u > 0, the admissibility of the above solution is no longer guaranteed

by Theorem 4.1 . For example we see the Riemann problem for Cauchy data

v - v-v (U)b
X< 0, X> 0

u I + U (w +(U) - v*)) u 4.11

+ U(v*U) - w

possesses a solution (see Figure 11)

S-_

u - u+ + Ub(V+(Ub - v*U)) + U(w*(U) - W) X < Ut

v - v(U)t Ut < X< Ut

u - u+ + U(v+(Ub) - w(u)) (4.12)

w - v (U b) I
Ut < X

U -4

: -34-
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where

Ub P(v+(u b )+P(W-)
Ub ~W+(U b )-w

P ..(w* 6i) )+ W,(

w* (U) -w (U

-p(v'(U))+p(v-)

v* (U) -w-

t4 U U + + U(w+(Ub) -w* (U))

w w (U)
+

u u +u ( + (Ub) -w* (U))

+U(w*(U) -W ,

00

UrW (U)
4b

Figure 11: Solution of (1. 6), (4.11)
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From Theorem 4.1 and Theorem 3.3 (i) we see the solution is admissible

1
according to the viscosity-capillarity condition (A,D), A > - in that both

X = t and X = Ut are admissible singular surfaces. Such a solution

indicates that as the fluid is compressed for w (U ) > w (U) a single
+a +

propagating phase boundary, separating liquid and vapor phases, and traveling

with speed Ua > 0 is possible. However upon further compression

w+(Ub) < w+(U), this interface bifurcates into a classical shock in the vapor

phase moving out from the propagating interface. The shock travels with speed

U, the liquid-vapor interface now travels with fixed speed U. Thus

represents the maximum speed a liquid-vapor interface may travel in

compression (see Figure 12).

jkp
w

1

li id aw-

. w~+ i a

i vapor
'I X

w

liquU

W* (U)
. Ii w+ (ub )

vapor + b

Figure 12: Shock wave bifurcates out of
liquid vapor interface, Ua <U < Ub
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On the other hand if we reverse the process and start with initial data

(4.11) and raise w+(Ub) through expansion the shock wave and interfacial

boundary of (4.12) will coalesce into an interfacia1 boundary traveling with

speed Ua.

Example 12. Let w+ be given in (0,-) and let w_(U) be a solution of the

Rankine-Huginot relation with U < 0, namely

w+lw (U)

In this case an argument similar to that given for Lemma 4.12 yields the

following result.

* Theorem 4.13. Assume A > 0 and let w+ be such that either

S(I) W_ exp(C )fl,O)l > 0 0 < w+ ( 6

or

(I') 6 < w+

and

(II) assume there exists U. < 0 so that

w+(UM exp(- C)f(C,O)dC - 0

Then there is a unique U, UM < U < 0, so that (3.8) possesses a solution in

the v < 0 half-plane connecting (w (U),0) to (w+,0).

Pictorially this result is represented in Figures 13 and 14. In this

case the singular surface X - Ut separating liquid and vapor phases is a

rarefaction shock which is admissible according to the viscosity-capillarity

condition (A,D). This example stands in contrast to Example 9 where the

interfacial rarefaction shock was not (modulo exceptional circustances)

admissible according to the viscosity-capillarity condition (A,D).
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slope -

loslope

w
a

w-(U) +

Figure 13

1
-4 - V

1

vaor +

Figure 14: Rarefaction shock waves

if the fluid ia compressed or expanded at -changing to value of w_

(U) the pure rarefaction will disappear. Expansion will set new Cauchy data

e.g. if w_(U) < w a,

a

(4.13)
u - u - + U(v(U).v)a+ J(V --(U))

* then (1.5) possesses a solution
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Vw a X <Ut

vw w(U) Ut <X <Ut

U u- + U(v-(U)-a) (.4

W M W + Ut < x

U -u- + U(w-(6)-vQ) + U(v -V (U))

Here U -

w(U) -wa

of course from Theorems 3.3 and 4.13 wiill show (4.14) is admissible according

to the viscosity-capillarity criterion (AD).

dt

u u

+ U(w (ii)-w 0
a VI

'4 ww
+

vw 0
a u u (w ()-w)

-a
u~~ u+U W (U))

x
Figure 15
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on the other hand if we compress the fluid at + we can envisage

Cauchy data w= w X , w

(4.15)
uu U-U +

vhere b > wb < w(6). In this case we again can connect the vapor state

w -w+, u -u+. to aliquid phase w -w(U), U =u+ - U(v+-w_)(U)). Then

this liquid phase can be connected by a classical rarefaction wave in the

liquid phase to w = wb, ua - u. for Vb, u_ sufficiently near

wv(U), u+ - U(w+-w(U)) (see Lax [161). Pictorically the result is shown in

Fiqure 16.

rarefaction wave u
nfluidpas+

u u

C,

Figure 16

Example 13,. In this example we see that "metastable" states are dynamically

admissible as perturbations of f an equilibrium configuration. Assume u_-

u= 0, U -0, and w- and W

f + exp( 2D )(p(C) - p(w_))dC 0
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Hence according to Example 10 this singular surface is admissible according to

the viscosity-capillarity condition (A,D). But from Theorem 3.3 (i) the

singular surfaces

1' X -U t separating wv u - 0 and
a+

w wa U Ua (+- a wih 0<wa < + an

-p (v) +p (wV)

r 2:XiUbt separating w w-, u0 and

w b u -U b ( v b) vith v- <v w <a and

U--w

are admissible according to the viscosity-capillarity criterion (A,D), A >0.

Thus the Cauchy problem (1.6) with initial data

v -w v a

X <0 X >)0 (4.16)
u 0 u--U a(v+-v)

* and

wV= b v-vw

X <0 X X>0 (4.17)

u - -Ub(wv-wb) U - 0

possesses solutions

w ww W + V MW a

X < 0, 0 < X < U at, X >U at (4.18)

u 0 u 0 u -Ua (w+ wa
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V V b V t -WM V= +

X Ut Ubt <X<0, > 0 *(4.19)

u - -U (w-vW) u -0 u -0

By Theorem 3.3 Mi arnd Example 10 these solutions are admissible according to

the viscosity-capillarity condition (h,D), A 0. (See Figure 17.)

t

w= w

u~~ ~ 0 a(C

v= w

u= 0a + a

ww w

W Wb u= 0

u= b(w -w)

Figure 17: Solution 4.18 above and 4.19 below

in both examples we see solutions exist in the "metastable" regions

(wv,a) and (O,w ) though only for a period of finite duration determined

by U a and Ub respectively.
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Remarks. The results presented in this section are consistent with those

. given by Zel'dovich and Raizer (17, p. 750-762]. However unlike the purely

physical arguments given there our results are based on a rigorous analysis of

" the ushock structure problem". Moreover we note that the result of Theorem

* 4.1 (i) showing the theoretical existence of a shock wave (admissible in the

sense of the capillarity-viscosity criterion (A,D), A > 0) for the complete

transition from superheated vapor to liquid is consistent with the

experimental results of Dettleff, Thompson, Meier, and Speckman [18]; see [5]

for a complete non-isothermal discussion of this result.
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